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Current Solution of Self-Driving
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End-to-End learning Demo
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Variational End-to-End Navigation and Localization
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What Is End-to-End Learning

A kind of
deep learning
process

Joint training
process
rather than
step by step

Imitation of
human
behavior

Human
acceptable
input

Complete
vision
solution

Removal of
intermediate
process

Output of
direct vehicle-
control
command
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Pros

Omit intermediate complex
process
Similar to human driving

behavior
Output can be directly used

From result

Get rid of unnecessary sensing
facilities
Reduce cost for computing

Reduce dependency on external
references

From processing
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Feasibility

Figure. 1.1: Images used in experiments to show the effect of image-shifts on steer angle
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Feasibility

Applying Displacement to Salient Objects, Background, and Whole Image
And Measuring the Median Change in Predicted Inverse-R
Across a Sample of 200 Images
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m= Background

Change in Inverse-R
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-0.005

Pixel Shift (negative values are left shifts)

Figure. 1.2: Plots of PilotNet steering output as a function of pixel shift in the input image
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mean squared error loss

Feasibility

(i) Left (ii) Centre (iii) Right camera image

model mean squared error loss
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Network Architecture
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Fig. 2.1 Model architecture
Source: Amini A, et al. Variational End-to-End Navigation and Localization
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Figure. 2.3: Camera model

Figure. 2.2: Images from camera input
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Map Model

Merge heading information

Guide direction from a preset route
Implement localization
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Routed Map
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flatten

Figure. 3.4: Map input cropped by osmnx Figure. 3.5: Map model
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N

Gaussian Mixture Model

aq

¢i = FE —; * Assume N Gaussian clusters to
> O estimate available roads
Z Hi = Gy ,
" e > M * Use fully connected layers to
_ simulate GMM
o; = exp(a;) q
P(6s16p, 1, M) = 32, ¢i N (i, 07) * Fit three parameters to generate

probabilistic control

Figure. 3.6 GMM model
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Loss Function
L(fs(1,M,6,),0,) + [[6],+
2
in(Ui)_'_ (fD(Ia Qp)_gs)

Log likelihood of L1 norm of L2 norm of MSE of

N

PDF weight variance curvature
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Input Data

HHE [

Figure. 4.1: Origin map Figure. 4.2: Map projected by osmnx
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Input Data

Figure size: 200 * 80 * 3

' Figure size: 50 * 50 * 1 Figure size: 50 * 50 * 3

X

Figure. 2.2: Images from camera input Figure. 4.4: Map input cropped by osmnx
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Input Demo
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Result

R2 score: 0.86

Figure. 4.5: Prediction on training set
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Result

Figure. 4.6: Prediction on training set Figure. 4.7: Prediction on testing set
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Affirmative Result

Get an accurate result
« Realize localization
Preset route

Future for L4/L5

Feasibility Simplificatio

« Reduce intermediate
processing

« Get rid of high-precision
facilities/maps

Verify the solution
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Limitation

* Lower performance on complicated scene
* Need of large training data

* Problem of speed
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