End-to-End Learning

Yang Yuan Machine Learning Department

Agenda

01 BACKGROUND

02 INTRODUCTION

03 CORE TECHNOLOGY

04 EXPERIMENT AND RESULT

05 CONCLUSION

Background

01 BACKGROUND

Current Solution of Self-Driving

LanesObstacleRouteHigh-precisionDetectionDetectionPlanningMap

01 BACKGROUND

Limitation

Facilities	Computing	Complicated	Participation
	Cost	Planning	of Driver
U-bloxRTK	 Large-scale	 Real-time	 Dependency
	data parallel	route	of reference Need of
	computing	planning	taking over

Introduction

End-to-End learning Demo

Variational End-to-End Navigation and Localization

Alexander Amini¹, Guy Rosman², Sertac Karaman³, and Daniela Rus¹

¹ Computer Science and Artificial Intelligence Lab, MIT ² Toyota Research Institute ³ Laboratory for Information and Decision Systems, MIT

What Is End-to-End Learning

- A kind of deep learning process
- Imitation of human behavior
- Joint training process
 rather than
 step by step
- Human acceptable input
- Complete vision solution

- Output of direct vehiclecontrol command
- Removal of intermediate process

Pros

- Omit intermediate complex process
- Similar to human driving behavior
- Output can be directly used

- Get rid of unnecessary sensing facilities
- Reduce cost for computing
- Reduce dependency on external references

From result

From processing

Feasibility

Figure. 1.1: Images used in experiments to show the effect of image-shifts on steer angle

Feasibility

Applying Displacement to Salient Objects, Background, and Whole Image And Measuring the Median Change in Predicted Inverse-R Across a Sample of 200 Images

Pixel Shift (negative values are left shifts)

Figure. 1.2: Plots of PilotNet steering output as a function of pixel shift in the input image

Feasibility

(i) Left (ii) Centre (iii) Right camera image

model mean squared error loss

Ta=raining vs Validation loss

Core Technology

Network Architecture

Fig. 2.1 Model architecture Source: Amini A., et al. Variational End-to-End Navigation and Localization

Camera Model

Figure. 2.2: Images from camera input

Front Camera, I_1 $80 \times 200 \times 3$ Right Camera, I_2 $80 \times 200 \times 3$ Left Camera, I_3 $80 \times 200 \times 3$ $120 \times 200 \times 3$ $120 \times 200 \times 3$

Figure. 2.3: Camera model

Map Model

- Merge heading information
- Guide direction from a preset route
- Implement localization

Figure. 3.4: Map input cropped by osmnx

Figure. 3.5: Map model

Gaussian Mixture Model

Figure. 3.6 GMM model

- Assume N Gaussian clusters to estimate available roads
- Use fully connected layers to simulate GMM
- Fit three parameters to generate probabilistic control

Loss Function

$$\begin{pmatrix} \mathcal{L}(f_S(I, M, \theta_p), \theta_s) + \|\phi\|_p + \\ \sum_i \psi_S(\sigma_i) + (f_D(I, M, \theta_p) - \theta_s)^2 \end{pmatrix}$$

Log likelihood ofL1 norm ofL2 norm ofMSE ofPDFweightvariancecurvature

Experiment

Input Data

Figure. 4.2: Map projected by osmnx

Figure. 4.1: Origin map

Input Data

Figure size: 200 * 80 * 3

Figure size: 50 * 50 * 1 Figure size: 50 * 50 * 3

Figure. 4.4: Map input cropped by osmnx

Figure. 2.2: Images from camera input

04 EXPERIMENT

Input Demo

Result

Figure. 4.6: Prediction on training set

Figure. 4.7: Prediction on testing set

Conclusion

05 CONCLUSION

Affirmative Result

- Get an accurate result
- Realize localization
- Preset route

Future for L4/L5

Feasibility Accuracy Simplification Future

Verify the solution

- Reduce intermediate
 processing
- Get rid of high-precision facilities/maps

Limitation

- Lower performance on complicated scene
- Need of large training data
- Problem of speed

THANK YOU

Machine Learning Department